To my dismay, I’ve been sent, once again, that silly, snarky, adolescent, clip of those naughty “what the p-value” bears (see Aug 5 post),, who cannot seem to get a proper understanding of significance tests into their little bear brains. So apparently some people haven’t seen my rejoinder which, as I said then, practically wrote itself. So since it’s Saturday night here at the Elbar Room, let’s listen in to a reblog of my rejoinder (replacing p-value bears with hypothetical Bayesian bears)–but you can’t get it without first watching the Aug 5 post, since I’m mimicking them. [My idea for the rejoinder was never polished up for actually making a clip. In fact the original post had 16 comments where several reader improvements were suggested. Maybe someone will want to follow through*.] I just noticed a funny cartoon on Bayesian intervals on Normal Deviate’s post from Nov. 9.
This continues yesterday’s post: I checked out the the” xtranormal” http://www.xtranormal.com/ website. Turns out there are other figures aside from the bears that one may hire out, but they pronounce “Bayesian” as an unrecognizable, foreign-sounding word with around five syllables. Anyway, before taking the plunge, here is my first attempt, just off the top of my head. Please send corrections and additions.
Bear #1: Do you have the results of the study?
Bear #2:Yes. The good news is there is a .996 probability of a positive difference in the main comparison.
Bear #1: Great. So I can be well assured that there is just a .004 probability that such positive results would occur if they were merely due to chance.
Bear #2: Not really, that would be an incorrect interpretation. Continue reading

Dear Reader: I’ll be traveling, mostly to London, for a couple of weeks, but plan to keep up the blog as usual (semi-irratically regular*); I will mostly keep msc meanderings under the wraps of “pages” (I don’t know if anyone ever reads them, I’m still trying to figure them out actually.)

