I may have been exaggerating one year ago when I started this post with “Hardly a day goes by”, but now it is literally the case*. (This also pertains to reading for Phil6334 for Thurs. March 6):

Hardly a day goes by where I do not come across an article on the problems for statistical inference based on fallaciously capitalizing on chance: high-powered computer searches and “big” data trolling offer rich hunting grounds out of which apparently impressive results may be “cherry-picked”:

When the hypotheses are tested on the same data that suggested them and when tests of significance are based on such data, then a spurious impression of validity may result. The computed level of significance may have almost no relation to the true level. . . . Suppose that twenty sets of differences have been examined, that one difference seems large enough to test and that this difference turns out to be “significant at the 5 percent level.” Does this mean that differences as large as the one tested would occur by chance only 5 percent of the time when the true difference is zero? The answer is

no,because the difference tested has beenselectedfrom the twenty differences that were examined. The actual level of significance is not 5 percent, but 64 percent! (Selvin 1970, 104)[1]

…Oh wait -this is from a contributor to Morrison and Henkel way back in 1970! But there is one big contrast, I find, that makes current day reports so much more worrisome: critics of the Morrison and Henkel ilk clearly report that to ignore a variety of “selection effects” results in a fallacious computation of the actual significance level associated with a given inference; clear terminology is used to distinguish the “computed” or “nominal” significance level on the one hand, and the actual or warranted significance level on the other. Continue reading