E.S. Pearson

A. Spanos: Egon Pearson’s Neglected Contributions to Statistics

11 August 1895 – 12 June 1980

Continuing with my Egon Pearson posts in honor of his birthday, I reblog a post by Aris Spanos:  Egon Pearson’s Neglected Contributions to Statistics“. 

    Egon Pearson (11 August 1895 – 12 June 1980), is widely known today for his contribution in recasting of Fisher’s significance testing into the Neyman-Pearson (1933) theory of hypothesis testing. Occasionally, he is also credited with contributions in promoting statistical methods in industry and in the history of modern statistics; see Bartlett (1981). What is rarely mentioned is Egon’s early pioneering work on:

(i) specification: the need to state explicitly the inductive premises of one’s inferences,

(ii) robustness: evaluating the ‘sensitivity’ of inferential procedures to departures from the Normality assumption, as well as

(iii) Mis-Specification (M-S) testing: probing for potential departures from the Normality  assumption.

Arguably, modern frequentist inference began with the development of various finite sample inference procedures, initially by William Gosset (1908) [of the Student’s t fame] and then Fisher (1915, 1921, 1922a-b). These inference procedures revolved around a particular statistical model, known today as the simple Normal model: Continue reading

Categories: E.S. Pearson, phil/history of stat, Spanos, Testing Assumptions | 2 Comments

Performance or Probativeness? E.S. Pearson’s Statistical Philosophy

egon pearson

E.S. Pearson (11 Aug, 1895-12 June, 1980)

E.S. Pearson died on this day in 1980. Aside from being co-developer of Neyman-Pearson statistics, Pearson was interested in philosophical aspects of statistical inference. A question he asked is this: Are methods with good error probabilities of use mainly to supply procedures which will not err too frequently in some long run? (performance). Or is it the other way round: that the control of long run error properties are of crucial importance for probing the causes of the data at hand? (probativeness). I say no to the former and yes to the latter. But how exactly does it work? It’s not just the frequentist error statistician who faces this question, but also some contemporary Bayesians who aver that the performance or calibration of their methods supplies an evidential (or inferential or epistemic) justification (e.g., Robert Kass 2011). The latter generally ties the reliability of the method that produces the particular inference C to degrees of belief in C. The inference takes the form of a probabilism, e.g., Pr(C|x), equated, presumably, to the reliability (or coverage probability) of the method. But why? The frequentist inference is C, which is qualified by the reliability of the method, but there’s no posterior assigned C. Again, what’s the rationale? I think existing answers (from both tribes) come up short in non-trivial ways. Continue reading

Categories: E.S. Pearson, highly probable vs highly probed, phil/history of stat | Leave a comment

Jerzy Neyman and “Les Miserables Citations” (statistical theater in honor of his birthday)

images-14

Neyman April 16, 1894 – August 5, 1981

For my final Jerzy Neyman item, here’s the post I wrote for his birthday last year: 

A local acting group is putting on a short theater production based on a screenplay I wrote:  “Les Miserables Citations” (“Those Miserable Quotes”) [1]. The “miserable” citations are those everyone loves to cite, from their early joint 1933 paper:

We are inclined to think that as far as a particular hypothesis is concerned, no test based upon the theory of probability can by itself provide any valuable evidence of the truth or falsehood of that hypothesis.

But we may look at the purpose of tests from another viewpoint. Without hoping to know whether each separate hypothesis is true or false, we may search for rules to govern our behavior with regard to them, in following which we insure that, in the long run of experience, we shall not be too often wrong. (Neyman and Pearson 1933, pp. 290-1).

In this early paper, Neyman and Pearson were still groping toward the basic concepts of tests–for example, “power” had yet to be coined. Taken out of context, these quotes have led to knee-jerk (behavioristic) interpretations which neither Neyman nor Pearson would have accepted. What was the real context of those passages? Well, the paper opens, just five paragraphs earlier, with a discussion of a debate between two French probabilists—Joseph Bertrand, author of “Calculus of Probabilities” (1907), and Emile Borel, author of “Le Hasard” (1914)! According to Neyman, what served “as an inspiration to Egon S. Pearson and myself in our effort to build a frequentist theory of testing hypotheses”(1977, p. 103) initially grew out of remarks of Borel, whose lectures Neyman had attended in Paris. He returns to the Bertrand-Borel debate in four different papers, and circles back to it often in his talks with his biographer, Constance Reid. His student Erich Lehmann (1993), regarded as the authority on Neyman, wrote an entire paper on the topic: “The Bertrand-Borel Debate and the Origins of the Neyman Pearson Theory”. Continue reading

Categories: E.S. Pearson, Neyman, Statistics | Leave a comment

History of statistics sleuths out there? “Ideas came into my head as I sat on a gate overlooking an experimental blackcurrant plot”–No wait, it was apples, probably

E.S.Pearson on Gate

E.S.Pearson on a Gate, Mayo sketch

Here you see my scruffy sketch of Egon drawn 20 years ago for the frontispiece of my book, “Error and the Growth of Experimental Knowledge” (EGEK 1996). The caption is

“I might recall how certain early ideas came into my head as I sat on a gate overlooking an experimental blackcurrant plot… –E.S Pearson, “Statistical Concepts in Their Relation to Reality”.

He is responding to Fisher to “dispel the picture of the Russian technological bogey”. [i]

So, as I said in my last post, just to make a short story long, I’ve recently been scouring around the history and statistical philosophies of Neyman, Pearson and Fisher for purposes of a book soon to be completed, and I discovered a funny little error about this quote. Only maybe 3 or 4 people alive would care, but maybe someone out there knows the real truth.

OK, so I’d been rereading Constance Reid’s great biography of Neyman, and in one place she interviews Egon about the sources of inspiration for their work. Here’s what Egon tells her: Continue reading

Categories: E.S. Pearson, phil/history of stat, Statistics | 1 Comment

Jerzy Neyman and “Les Miserables Citations” (statistical theater in honor of his birthday)

images-14

Neyman April 16, 1894 – August 5, 1981

In honor of Jerzy Neyman’s birthday today, a local acting group is putting on a short theater production based on a screenplay I wrote:  “Les Miserables Citations” (“Those Miserable Quotes”) [1]. The “miserable” citations are those everyone loves to cite, from their early joint 1933 paper:

We are inclined to think that as far as a particular hypothesis is concerned, no test based upon the theory of probability can by itself provide any valuable evidence of the truth or falsehood of that hypothesis.

But we may look at the purpose of tests from another viewpoint. Without hoping to know whether each separate hypothesis is true or false, we may search for rules to govern our behavior with regard to them, in following which we insure that, in the long run of experience, we shall not be too often wrong. (Neyman and Pearson 1933, pp. 290-1).

Continue reading

Categories: E.S. Pearson, Neyman, Statistics | 7 Comments

“Statistical Concepts in Their Relation to Reality” by E.S. Pearson

To complete the last post, here’s Pearson’s portion of the “triad” 

E.S.Pearson on Gate

E.S.Pearson on Gate (sketch by D. Mayo)

“Statistical Concepts in Their Relation to Reality”

by E.S. PEARSON (1955)

SUMMARY: This paper contains a reply to some criticisms made by Sir Ronald Fisher in his recent article on “Scientific Methods and Scientific Induction”.

Controversies in the field of mathematical statistics seem largely to have arisen because statisticians have been unable to agree upon how theory is to provide, in terms of probability statements, the numerical measures most helpful to those who have to draw conclusions from observational data.  We are concerned here with the ways in which mathematical theory may be put, as it were, into gear with the common processes of rational thought, and there seems no reason to suppose that there is one best way in which this can be done.  If, therefore, Sir Ronald Fisher recapitulates and enlarges on his views upon statistical methods and scientific induction we can all only be grateful, but when he takes this opportunity to criticize the work of others through misapprehension of their views as he has done in his recent contribution to this Journal (Fisher 1955), it is impossible to leave him altogether unanswered.

In the first place it seems unfortunate that much of Fisher’s criticism of Neyman and Pearson’s approach to the testing of statistical hypotheses should be built upon a “penetrating observation” ascribed to Professor G.A. Barnard, the assumption involved in which happens to be historically incorrect.  There was no question of a difference in point of view having “originated” when Neyman “reinterpreted” Fisher’s early work on tests of significance “in terms of that technological and commercial apparatus which is known as an acceptance procedure”.  There was no sudden descent upon British soil of Russian ideas regarding the function of science in relation to technology and to five-year plans.  It was really much simpler–or worse.  The original heresy, as we shall see, was a Pearson one!

TO CONTINUE READING E.S. PEARSON’S PAPER CLICK HERE.

Categories: E.S. Pearson, phil/history of stat, Statistics | Tags: , , | Leave a comment

Blog at WordPress.com.