I continue a week of Fisherian posts in honor of his birthday (Feb 17). This is his contribution to the “Triad”–an exchange between Fisher, Neyman and Pearson 20 years after the Fisher-Neyman break-up. They are each very short.

*“Statistical Methods and Scientific Induction”*

*by Sir Ronald Fisher (1955)
*

**SUMMARY**

The attempt to reinterpret the common tests of significance used in scientific research as though they constituted some kind of acceptance procedure and led to “decisions” in Wald’s sense, originated in several misapprehensions and has led, apparently, to several more.

The three phrases examined here, with a view to elucidating they fallacies they embody, are:

- “Repeated sampling from the same population”,
- Errors of the “second kind”,
- “Inductive behavior”.

Mathematicians without personal contact with the Natural Sciences have often been misled by such phrases. The errors to which they lead are not only numerical.

To continue reading Fisher’s paper.

The most noteworthy feature is Fisher’s position on Fiducial inference, typically downplayed. I’m placing a summary and link to Neyman’s response below–it’s that interesting.

**“Note on an Article by Sir Ronald Fisher“**

**by Jerzy Neyman (1956)**

**Summary**

(1) FISHER’S allegation that, contrary to some passages in the introduction and on the cover of the book by Wald, this book does not really deal with experimental design is unfounded. In actual fact, the book is permeated with problems of experimentation. (2) Without consideration of hypotheses alternative to the one under test and without the study of probabilities of the two kinds, no purely probabilistic theory of tests is possible. (3) The conceptual fallacy of the notion of fiducial distribution rests upon the lack of recognition that valid probability statements about random variables usually cease to be valid if the random variables are replaced by their particular values. The notorious multitude of “paradoxes” of fiducial theory is a consequence of this oversight. (4) The idea of a “cost function for faulty judgments” appears to be due to Laplace, followed by Gauss.