Posts Tagged With: testing model assumptions

Phil 6334: Misspecification Testing: Ordering From A Full Diagnostic Menu (part 1)

.

 We’re going to be discussing the philosophy of m-s testing today in our seminar, so I’m reblogging this from Feb. 2012. I’ve linked the 3 follow-ups below. Check the original posts for some good discussion. (Note visitor*)

“This is the kind of cure that kills the patient!”

is the line of Aris Spanos that I most remember from when I first heard him talk about testing assumptions of, and respecifying, statistical models in 1999.  (The patient, of course, is the statistical model.) On finishing my book, EGEK 1996, I had been keen to fill its central gaps one of which was fleshing out a crucial piece of the error-statistical framework of learning from error: How to validate the assumptions of statistical models. But the whole problem turned out to be far more philosophically—not to mention technically—challenging than I imagined. I will try (in 3 short posts) to sketch a procedure that I think puts the entire process of model validation on a sound logical footing. Continue reading

Categories: Intro MS Testing, Statistics | Tags: , , , , | 16 Comments

Failing to Apply vs Violating the Likelihood Principle

In writing a new chapter on the Strong Likelihood Principle [i] the past few weeks, I noticed a passage in G. Casella and R. Berger (2002) that in turn recalled a puzzling remark noted in my Jan. 3, 2012 post. The post began:

A question arose from a Bayesian acquaintance:

“Although the Birnbaum result is of primary importance for sampling theorists, I’m still interested in it because many Bayesian statisticians think that model checking violates the (strong) likelihood principle (SLP), as if this principle is a fundamental axiom of Bayesian statistics”.

But this is puzzling for two reasons. First, if the LP does not preclude testing for assumptions (and he is right that it does not[ii]), then why not simply explain that rather than appeal to a disproof of something that actually never precluded model testing?   To take the disproof of the LP as grounds to announce: “So there! Now even Bayesians are free to test their models” would seem only to ingrain the original fallacy.

You can read the rest of the original post here.

The remark in G. Casella and R. Berger seems to me equivocal on this point: Continue reading

Categories: Likelihood Principle, Philosophy of Statistics, Statistics | Tags: , , , | 2 Comments

Misspecification Tests: (part 4) and brief concluding remarks

The Nature of the Inferences From Graphical Techniques: What is the status of the learning from graphs? In this view, the graphs afford good ideas about the kinds of violations for which it would be useful to probe, much as looking at a forensic clue (e.g., footprint, tire track) helps to narrow down the search for a given suspect, a fault-tree, for a given cause. The same discernment can be achieved with a formal analysis (with parametric and nonparametric tests), perhaps more discriminating than can be accomplished by even the most trained eye, but the reasoning and the justification are much the same. (The capabilities of these techniques may be checked by simulating data deliberately generated to violate or obey the various assumptions.)

The combined indications from the graphs indicate departures from the LRM in the direction of the DLRM, but only, for the moment, as indicating a fruitful model to probe further.  We are not licensed to infer that it is itself a statistically adequate model until its own assumptions are subsequently tested.  Even when they are checked and found to hold up – which they happen to be in this case – our inference must still be qualified. While we may infer that the model is statistically adequate – this should be understood only as licensing the use the model as a reliable tool for primary statistical inferences but not necessarily as representing the substantive phenomenon being modeled.

Continue reading

Categories: Intro MS Testing, Statistics | Tags: , , , , | 6 Comments

Intro to Misspecification Testing: Ordering From A Full Diagnostic Menu (part 1)

 

“This is the kind of cure that kills the patient!”

is the line of Aris Spanos that I most remember from when I first heard him talk about testing assumptions of, and respecifying, statistical models in 1999.  (The patient, of course, is the statistical model.) On finishing my book, EGEK 1996, I had been keen to fill its central gaps one of which was fleshing out a crucial piece of the error-statistical framework of learning from error: How to validate the assumptions of statistical models. But the whole problem turned out to be far more philosophically—not to mention technically—challenging than I imagined.I will try (in 3 short posts) to sketch a procedure that I think puts the entire process of model validation on a sound logical footing.  Thanks to attending several of Spanos’ seminars (and his patient tutorials, for which I am very grateful), I was eventually able to reflect philosophically on aspects of  his already well-worked out approach. (Synergies with the error statistical philosophy, of which this is a part,  warrant a separate discussion.)

Continue reading

Categories: Intro MS Testing, Statistics | Tags: , , , , | 20 Comments

Model Validation and the LP-(Long Playing Vinyl Record)

A Bayesian acquaintance writes:

Although the Birnbaum result is of primary importance for sampling theorists, I’m still interested in it because many Bayesian statisticians think that model checking violates the likelihood principle, as if this principle is a fundamental axiom of Bayesian statistics.

But this is puzzling for two reasons. First, if the LP does not preclude testing for assumptions (and he is right that it does not[i]), then why not simply explain that rather than appeal to a disproof of something that actually never precluded model testing?   To take the disproof of the LP as grounds to announce: “So there! Now even Bayesians are free to test their models” would seem only to ingrain the original fallacy. Continue reading

Categories: Statistics | Tags: , , , | Leave a comment

Blog at WordPress.com.