3 YEARS AGO (JUNE 2014): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: June 2014. I mark in red 3-4 posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 4 others of general relevance to philosophy of statistics [2].  Posts that are part of a “unit” or a group count as one.

June 2014

  • (6/5) Stephen Senn: Blood Simple? The complicated and controversial world of bioequivalence (guest post)
  • (6/9) “The medical press must become irrelevant to publication of clinical trials.”
  • (6/11) A. Spanos: “Recurring controversies about P values and confidence intervals revisited”
  • (6/14) “Statistical Science and Philosophy of Science: where should they meet?”
  • (6/21) Big Bayes Stories? (draft ii)
  • (6/25) Blog Contents: May 2014
  • (6/28) Sir David Hendry Gets Lifetime Achievement Award
  • (6/30) Some ironies in the ‘replication crisis’ in social psychology (4th and final installment)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30,2016, March 30,2017 (moved to 4) -very convenient way to allow data-dependent choices.

Save

Save

Save

Save

Save

Categories: 3-year memory lane | Leave a comment

Can You Change Your Bayesian Prior? The one post whose comments (some of them) will appear in my new book

.

I blogged this exactly 2 years ago here, seeking insight for my new book (Mayo 2017). Over 100 (rather varied) interesting comments ensued. This is the first time I’m incorporating blog comments into published work. You might be interested to follow the nooks and crannies from back then, or add a new comment to this.

This is one of the questions high on the “To Do” list I’ve been keeping for this blog.  The question grew out of discussions of “updating and downdating” in relation to papers by Stephen Senn (2011) and Andrew Gelman (2011) in Rationality, Markets, and Morals.[i]

“As an exercise in mathematics [computing a posterior based on the client’s prior probabilities] is not superior to showing the client the data, eliciting a posterior distribution and then calculating the prior distribution; as an exercise in inference Bayesian updating does not appear to have greater claims than ‘downdating’.” (Senn, 2011, p. 59)

“If you could really express your uncertainty as a prior distribution, then you could just as well observe data and directly write your subjective posterior distribution, and there would be no need for statistical analysis at all.” (Gelman, 2011, p. 77)

But if uncertainty is not expressible as a prior, then a major lynchpin for Bayesian updating seems questionable. If you can go from the posterior to the prior, on the other hand, perhaps it can also lead you to come back and change it.

Is it legitimate to change one’s prior based on the data? Continue reading

Categories: Bayesian priors, Bayesian/frequentist | 14 Comments

Performance or Probativeness? E.S. Pearson’s Statistical Philosophy

egon pearson

E.S. Pearson (11 Aug, 1895-12 June, 1980)

E.S. Pearson died on this day in 1980. Aside from being co-developer of Neyman-Pearson statistics, Pearson was interested in philosophical aspects of statistical inference. A question he asked is this: Are methods with good error probabilities of use mainly to supply procedures which will not err too frequently in some long run? (performance). Or is it the other way round: that the control of long run error properties are of crucial importance for probing the causes of the data at hand? (probativeness). I say no to the former and yes to the latter. But how exactly does it work? It’s not just the frequentist error statistician who faces this question, but also some contemporary Bayesians who aver that the performance or calibration of their methods supplies an evidential (or inferential or epistemic) justification (e.g., Robert Kass 2011). The latter generally ties the reliability of the method that produces the particular inference C to degrees of belief in C. The inference takes the form of a probabilism, e.g., Pr(C|x), equated, presumably, to the reliability (or coverage probability) of the method. But why? The frequentist inference is C, which is qualified by the reliability of the method, but there’s no posterior assigned C. Again, what’s the rationale? I think existing answers (from both tribes) come up short in non-trivial ways. Continue reading

Categories: E.S. Pearson, highly probable vs highly probed, phil/history of stat | Leave a comment

3 YEARS AGO (May 2014): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: May 2014. I leave them unmarked this month, read whatever looks interesting.

May 2014

  • (5/1) Putting the brakes on the breakthrough: An informal look at the argument for the Likelihood Principle
  • (5/3) You can only become coherent by ‘converting’ non-Bayesianly
  • (5/6) Winner of April Palindrome contest: Lori Wike
  • (5/7) A. Spanos: Talking back to the critics using error statistics (Phil6334)
  • (5/10) Who ya gonna call for statistical Fraudbusting? R.A. Fisher, P-values, and error statistics (again)
  • (5/15) Scientism and Statisticism: a conference* (i)
  • (5/17) Deconstructing Andrew Gelman: “A Bayesian wants everybody else to be a non-Bayesian.”
  • (5/20) The Science Wars & the Statistics Wars: More from the Scientism workshop
  • (5/25) Blog Table of Contents: March and April 2014
  • (5/27) Allan Birnbaum, Philosophical Error Statistician: 27 May 1923 – 1 July 1976
  • (5/31) What have we learned from the Anil Potti training and test data frameworks? Part 1 (draft 2)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

 

Save

Save

Save

Save

Save

Categories: 3-year memory lane | 1 Comment

Allan Birnbaum: Foundations of Probability and Statistics (27 May 1923 – 1 July 1976)

27 May 1923-1 July 1976

27 May 1923-1 July 1976

Today is Allan Birnbaum’s birthday. In honor of his birthday, I’m posting the articles in the Synthese volume that was dedicated to his memory in 1977. The editors describe it as their way of  “paying homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics”. I paste a few snippets from the articles by Giere and Birnbaum. If you’re interested in statistical foundations, and are unfamiliar with Birnbaum, here’s a chance to catch up. (Even if you are, you may be unaware of some of these key papers.)

HAPPY BIRTHDAY ALLAN!

Synthese Volume 36, No. 1 Sept 1977: Foundations of Probability and Statistics, Part I

Editorial Introduction:

This special issue of Synthese on the foundations of probability and statistics is dedicated to the memory of Professor Allan Birnbaum. Professor Birnbaum’s essay ‘The Neyman-Pearson Theory as Decision Theory; and as Inference Theory; with a Criticism of the Lindley-Savage Argument for Bayesian Theory’ was received by the editors of Synthese in October, 1975, and a decision was made to publish a special symposium consisting of this paper together with several invited comments and related papers. The sad news about Professor Birnbaum’s death reached us in the summer of 1976, but the editorial project could nevertheless be completed according to the original plan. By publishing this special issue we wish to pay homage to Professor Birnbaum’s penetrating and stimulating work on the foundations of statistics. We are grateful to Professor Ronald Giere who wrote an introductory essay on Professor Birnbaum’s concept of statistical evidence and who compiled a list of Professor Birnbaum’s publications.

THE EDITORS

Continue reading

Categories: Birnbaum, Likelihood Principle, Statistics, strong likelihood principle | Tags: | 1 Comment

Frequentstein’s Bride: What’s wrong with using (1 – β)/α as a measure of evidence against the null?

Slide1

.

ONE YEAR AGO: …and growing more relevant all the time. Rather than leak any of my new book*, I reblog some earlier posts, even if they’re a bit scruffy. This was first blogged here (with a slightly different title). It’s married to posts on “the P-values overstate the evidence against the null fallacy”, such as this, and is wedded to this one on “How to Tell What’s True About Power if You’re Practicing within the Frequentist Tribe”. 

In their “Comment: A Simple Alternative to p-values,” (on the ASA P-value document), Benjamin and Berger (2016) recommend researchers report a pre-data Rejection Ratio:

It is the probability of rejection when the alternative hypothesis is true, divided by the probability of rejection when the null hypothesis is true, i.e., the ratio of the power of the experiment to the Type I error of the experiment. The rejection ratio has a straightforward interpretation as quantifying the strength of evidence about the alternative hypothesis relative to the null hypothesis conveyed by the experimental result being statistically significant. (Benjamin and Berger 2016, p. 1)

Continue reading

Categories: Bayesian/frequentist, fallacy of rejection, J. Berger, power, S. Senn | 17 Comments

3 YEARS AGO (APRIL 2014): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: April 2014. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 4 others I’d recommend[2].  Posts that are part of a “unit” or a group count as one. For this month, I’ll include all the 6334 seminars as “one”.

April 2014

  • (4/1) April Fool’s. Skeptical and enthusiastic Bayesian priors for beliefs about insane asylum renovations at Dept of Homeland Security: I’m skeptical and unenthusiastic
  • (4/3) Self-referential blogpost (conditionally accepted*)
  • (4/5) Who is allowed to cheat? I.J. Good and that after dinner comedy hour. . ..
     
  • (4/6) Phil6334: Duhem’s Problem, highly probable vs highly probed; Day #9 Slides
  • (4/8) “Out Damned Pseudoscience: Non-significant results are the new ‘Significant’ results!” (update)
  • (4/12) “Murder or Coincidence?” Statistical Error in Court: Richard Gill (TEDx video)
  • (4/14) Phil6334: Notes on Bayesian Inference: Day #11 Slides
  • (4/16) A. Spanos: Jerzy Neyman and his Enduring Legacy
  • (4/17) Duality: Confidence intervals and the severity of tests
  • (4/19) Getting Credit (or blame) for Something You Didn’t Do (BP oil spill)
  • (4/21) Phil 6334: Foundations of statistics and its consequences: Day#12
  • (4/23) Phil 6334 Visitor: S. Stanley Young, “Statistics and Scientific Integrity”
  • (4/26) Reliability and Reproducibility: Fraudulent p-values through multiple testing (and other biases): S. Stanley Young (Phil 6334: Day #13)
  • (4/30) Able Stats Elba: 3 Palindrome nominees for April! (rejected post)

 

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30,2016, March 30,2017 (moved to 4) -very convenient way to allow data-dependent choices.

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Statistics | Leave a comment

How to tell what’s true about power if you’re practicing within the error-statistical tribe

two_pink_clouds

.

This is a modified reblog of an earlier post, since I keep seeing papers that confuse this.

Suppose you are reading about a result x  that is just statistically significant at level α (i.e., P-value = α) in a one-sided test T+ of the mean of a Normal distribution with n iid samples, and (for simplicity) known σ:   H0: µ ≤  0 against H1: µ >  0. 

I have heard some people say:

A. If the test’s power to detect alternative µ’ is very low, then the just statistically significant x is poor evidence of a discrepancy (from the null) corresponding to µ’.  (i.e., there’s poor evidence that  µ > µ’ ).*See point on language in notes.

They will generally also hold that if POW(µ’) is reasonably high (at least .5), then the inference to µ > µ’ is warranted, or at least not problematic.

I have heard other people say:

B. If the test’s power to detect alternative µ’ is very low, then the just statistically significant x is good evidence of a discrepancy (from the null) corresponding to µ’ (i.e., there’s good evidence that  µ > µ’).

They will generally also hold that if POW(µ’) is reasonably high (at least .5), then the inference to µ > µ’ is unwarranted.

Which is correct, from the perspective of the (error statistical) philosophy, within which power and associated tests are defined? Continue reading

Categories: power, reforming the reformers | 17 Comments

“Fusion-Confusion?” My Discussion of Nancy Reid: “BFF Four- Are we Converging?”

.

Here are the slides from my discussion of Nancy Reid today at BFF4: The Fourth Bayesian, Fiducial, and Frequentist Workshop: May 1-3, 2017 (hosted by Harvard University)

Categories: Bayesian/frequentist, C.S. Peirce, confirmation theory, fiducial probability, Fisher, law of likelihood, Popper | Tags: | 1 Comment

S. Senn: “Automatic for the people? Not quite” (Guest post)

Stephen Senn

Stephen Senn
Head of  Competence Center for Methodology and Statistics (CCMS)
Luxembourg Institute of Health
Twitter @stephensenn

Automatic for the people? Not quite

What caught my eye was the estimable (in its non-statistical meaning) Richard Lehman tweeting about the equally estimable John Ioannidis. For those who don’t know them, the former is a veteran blogger who keeps a very cool and shrewd eye on the latest medical ‘breakthroughs’ and the latter a serial iconoclast of idols of scientific method. This is what Lehman wrote

Ioannidis hits 8 on the Richter scale: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173184 … Bayes factors consistently quantify strength of evidence, p is valueless.

Since Ioannidis works at Stanford, which is located in the San Francisco Bay Area, he has every right to be interested in earthquakes but on looking up the paper in question, a faint tremor is the best that I can afford it. I shall now try and explain why, but before I do, it is only fair that I acknowledge the very generous, prompt and extensive help I have been given to understand the paper[1] in question by its two authors Don van Ravenzwaaij and Ioannidis himself. Continue reading

Categories: Bayesian/frequentist, Error Statistics, S. Senn | 18 Comments

The Fourth Bayesian, Fiducial and Frequentist Workshop (BFF4): Harvard U

 

May 1-3, 2017
Hilles Event Hall, 59 Shepard St. MA

The Department of Statistics is pleased to announce the 4th Bayesian, Fiducial and Frequentist Workshop (BFF4), to be held on May 1-3, 2017 at Harvard University. The BFF workshop series celebrates foundational thinking in statistics and inference under uncertainty. The three-day event will present talks, discussions and panels that feature statisticians and philosophers whose research interests synergize at the interface of their respective disciplines. Confirmed featured speakers include Sir David Cox and Stephen Stigler.

The program will open with a featured talk by Art Dempster and discussion by Glenn Shafer. The featured banquet speaker will be Stephen Stigler. Confirmed speakers include:

Featured Speakers and DiscussantsArthur Dempster (Harvard); Cynthia Dwork (Harvard); Andrew Gelman (Columbia); Ned Hall (Harvard); Deborah Mayo (Virginia Tech); Nancy Reid (Toronto); Susanna Rinard (Harvard); Christian Robert (Paris-Dauphine/Warwick); Teddy Seidenfeld (CMU); Glenn Shafer (Rutgers); Stephen Senn (LIH); Stephen Stigler (Chicago); Sandy Zabell (Northwestern)

Invited Speakers and PanelistsJim Berger (Duke); Emery Brown (MIT/MGH); Larry Brown (Wharton); David Cox (Oxford; remote participation); Paul Edlefsen (Hutch); Don Fraser (Toronto); Ruobin Gong (Harvard); Jan Hannig (UNC); Alfred Hero (Michigan); Nils Hjort (Oslo); Pierre Jacob (Harvard); Keli Liu (Stanford); Regina Liu (Rutgers); Antonietta Mira (USI); Ryan Martin (NC State); Vijay Nair (Michigan); James Robins (Harvard); Daniel Roy (Toronto); Donald B. Rubin (Harvard); Peter XK Song (Michigan); Gunnar Taraldsen (NUST); Tyler VanderWeele (HSPH); Vladimir Vovk (London); Nanny Wermuth (Chalmers/Gutenberg); Min-ge Xie (Rutgers)

Continue reading

Categories: Announcement, Bayesian/frequentist | 2 Comments

Jerzy Neyman and “Les Miserables Citations” (statistical theater in honor of his birthday)

images-14

Neyman April 16, 1894 – August 5, 1981

For my final Jerzy Neyman item, here’s the post I wrote for his birthday last year: 

A local acting group is putting on a short theater production based on a screenplay I wrote:  “Les Miserables Citations” (“Those Miserable Quotes”) [1]. The “miserable” citations are those everyone loves to cite, from their early joint 1933 paper:

We are inclined to think that as far as a particular hypothesis is concerned, no test based upon the theory of probability can by itself provide any valuable evidence of the truth or falsehood of that hypothesis.

But we may look at the purpose of tests from another viewpoint. Without hoping to know whether each separate hypothesis is true or false, we may search for rules to govern our behavior with regard to them, in following which we insure that, in the long run of experience, we shall not be too often wrong. (Neyman and Pearson 1933, pp. 290-1).

In this early paper, Neyman and Pearson were still groping toward the basic concepts of tests–for example, “power” had yet to be coined. Taken out of context, these quotes have led to knee-jerk (behavioristic) interpretations which neither Neyman nor Pearson would have accepted. What was the real context of those passages? Well, the paper opens, just five paragraphs earlier, with a discussion of a debate between two French probabilists—Joseph Bertrand, author of “Calculus of Probabilities” (1907), and Emile Borel, author of “Le Hasard” (1914)! According to Neyman, what served “as an inspiration to Egon S. Pearson and myself in our effort to build a frequentist theory of testing hypotheses”(1977, p. 103) initially grew out of remarks of Borel, whose lectures Neyman had attended in Paris. He returns to the Bertrand-Borel debate in four different papers, and circles back to it often in his talks with his biographer, Constance Reid. His student Erich Lehmann (1993), regarded as the authority on Neyman, wrote an entire paper on the topic: “The Bertrand-Borel Debate and the Origins of the Neyman Pearson Theory”. Continue reading

Categories: E.S. Pearson, Neyman, Statistics | Leave a comment

Neyman: Distinguishing tests of statistical hypotheses and tests of significance might have been a lapse of someone’s pen

neyman

April 16, 1894 – August 5, 1981

I’ll continue to post Neyman-related items this week in honor of his birthday. This isn’t the only paper in which Neyman makes it clear he denies a distinction between a test of  statistical hypotheses and significance tests. He and E. Pearson also discredit the myth that the former is only allowed to report pre-data, fixed error probabilities, and are justified only by dint of long-run error control. Controlling the “frequency of misdirected activities” in the midst of finding something out, or solving a problem of inquiry, on the other hand, are epistemological goals. What do you think?

Tests of Statistical Hypotheses and Their Use in Studies of Natural Phenomena
by Jerzy Neyman

ABSTRACT. Contrary to ideas suggested by the title of the conference at which the present paper was presented, the author is not aware of a conceptual difference between a “test of a statistical hypothesis” and a “test of significance” and uses these terms interchangeably. A study of any serious substantive problem involves a sequence of incidents at which one is forced to pause and consider what to do next. In an effort to reduce the frequency of misdirected activities one uses statistical tests. The procedure is illustrated on two examples: (i) Le Cam’s (and associates’) study of immunotherapy of cancer and (ii) a socio-economic experiment relating to low-income homeownership problems.

I recommend, especially, the example on home ownership. Here are two snippets: Continue reading

Categories: Error Statistics, Neyman, Statistics | Tags: | 2 Comments

A. Spanos: Jerzy Neyman and his Enduring Legacy

Today is Jerzy Neyman’s birthday. I’ll post various Neyman items this week in honor of it, starting with a guest post by Aris Spanos. Happy Birthday Neyman!

A. Spanos

A Statistical Model as a Chance Mechanism
Aris Spanos 

Jerzy Neyman (April 16, 1894 – August 5, 1981), was a Polish/American statistician[i] who spent most of his professional career at the University of California, Berkeley. Neyman is best known in statistics for his pioneering contributions in framing the Neyman-Pearson (N-P) optimal theory of hypothesis testing and his theory of Confidence Intervals. (This article was first posted here.)

Neyman: 16 April

Neyman: 16 April 1894 – 5 Aug 1981

One of Neyman’s most remarkable, but least recognized, achievements was his adapting of Fisher’s (1922) notion of a statistical model to render it pertinent for  non-random samples. Fisher’s original parametric statistical model Mθ(x) was based on the idea of ‘a hypothetical infinite population’, chosen so as to ensure that the observed data x0:=(x1,x2,…,xn) can be viewed as a ‘truly representative sample’ from that ‘population’:

“The postulate of randomness thus resolves itself into the question, Of what population is this a random sample? (ibid., p. 313), underscoring that: the adequacy of our choice may be tested a posteriori.’’ (p. 314) Continue reading

Categories: Neyman, Spanos | Leave a comment

If you’re seeing limb-sawing in P-value logic, you’re sawing off the limbs of reductio arguments

images-2I was just reading a paper by Martin and Liu (2014) in which they allude to the “questionable logic of proving H0 false by using a calculation that assumes it is true”(p. 1704).  They say they seek to define a notion of “plausibility” that

“fits the way practitioners use and interpret p-values: a small p-value means H0 is implausible, given the observed data,” but they seek “a probability calculation that does not require one to assume that H0 is true, so one avoids the questionable logic of proving H0 false by using a calculation that assumes it is true“(Martin and Liu 2014, p. 1704).

Questionable? A very standard form of argument is a reductio (ad absurdum) wherein a claim C  is inferred (i.e., detached) by falsifying ~C, that is, by showing that assuming ~C entails something in conflict with (if not logically contradicting) known results or known truths [i]. Actual falsification in science is generally a statistical variant of this argument. Supposing Hin p-value reasoning plays the role of ~C. Yet some aver it thereby “saws off its own limb”! Continue reading

Categories: P-values, reforming the reformers, Statistics | 13 Comments

3 YEARS AGO (MARCH 2014): MEMORY LANE

3 years ago...

3 years ago…

MONTHLY MEMORY LANE: 3 years ago: March 2014. I mark in red three posts from each month that seem most apt for general background on key issues in this blog, excluding those reblogged recently[1], and in green up to 4 others I’d recommend[2].  Posts that are part of a “unit” or a group count as one. 3/19 and 3/17 are one, as are  3/19, 3/12 and 3/4, and the 6334 items 3/11, 3/22 and 3/26. So that covers nearly all the posts!

March 2014

 

  • (3/1) Cosma Shalizi gets tenure (at last!) (metastat announcement)
  • (3/2) Significance tests and frequentist principles of evidence: Phil6334 Day #6
  • (3/3) Capitalizing on Chance (ii)
  • (3/4) Power, power everywhere–(it) may not be what you think! [illustration]
  • (3/8) Msc kvetch: You are fully dressed (even under you clothes)?
  • (3/8) Fallacy of Rejection and the Fallacy of Nouvelle Cuisine
  • (3/11) Phil6334 Day #7: Selection effects, the Higgs and 5 sigma, Power
  • (3/12) Get empowered to detect power howlers
  • (3/15) New SEV calculator (guest app: Durvasula)
  • (3/17) Stephen Senn: “Delta Force: To what extent is clinical relevance relevant?” (Guest Post)

     

     

  • (3/19) Power taboos: Statue of Liberty, Senn, Neyman, Carnap, Severity
  • (3/22) Fallacies of statistics & statistics journalism, and how to avoid them: Summary & Slides Day #8 (Phil 6334)
  • (3/25) The Unexpected Way Philosophy Majors Are Changing The World Of Business

     

  • (3/26) Phil6334:Misspecification Testing: Ordering From A Full Diagnostic Menu (part 1)
  • (3/28) Severe osteometric probing of skeletal remains: John Byrd
  • (3/29) Winner of the March 2014 palindrome contest (rejected post)
  • (3/30) Phil6334: March 26, philosophy of misspecification testing (Day #9 slides)

[1] Monthly memory lanes began at the blog’s 3-year anniversary in Sept, 2014.

[2] New Rule, July 30,2016, March 30,2017 (moved to 4) -very convenient way to allow data-dependent choices.

Save

Save

Save

Save

Save

Categories: 3-year memory lane, Error Statistics, Statistics | Leave a comment

Announcement: Columbia Workshop on Probability and Learning (April 8)

I’m speaking on “Probing with Severity” at the “Columbia Workshop on Probability and Learning” On April 8:

Meetings of the Formal Philosophy Group at Columbia

April 8, 2017

Department of Philosophy, Columbia University

Room 716
Philosophy Hall, 1150 Amsterdam Avenue
New York 10027
United States

Sponsor(s):

  • The Formal Philosophy Group (Columbia)

Main speakers:

Gordon Belot (University of Michigan, Ann Arbor)

Simon Huttegger (University of California, Irvine)

Deborah Mayo (Virginia Tech)

Teddy Seidenfeld (Carnegie Mellon University)

Organisers:

Michael Nielsen (Columbia University)

Rush Stewart (Columbia University)

Details

Unfortunately, access to Philosophy Hall is by swipe access on the weekends. However, students and faculty will be entering and exiting the building throughout the day (with relateively high frequency since there is a popular cafe on the main floor).

https://www.facebook.com/events/1869417706613583/

Categories: Announcement | Leave a comment

Er, about those other approaches, hold off until a balanced appraisal is in

I could have told them that the degree of accordance enabling the ASA’s “6 principles” on p-values was unlikely to be replicated when it came to most of the “other approaches” with which some would supplement or replace significance tests– notably Bayesian updating, Bayes factors, or likelihood ratios (confidence intervals are dual to hypotheses tests). [My commentary is here.] So now they may be advising a “hold off” or “go slow” approach until some consilience is achieved. Is that it? I don’t know. I was tweeted an article about the background chatter taking place behind the scenes; I wasn’t one of people interviewed for this. Here are some excerpts, I may add more later after it has had time to sink in. (check back later)

“Reaching for Best Practices in Statistics: Proceed with Caution Until a Balanced Critique Is In”

J. Hossiason

“[A]ll of the other approaches*, as well as most statistical tools, may suffer from many of the same problems as the p-values do. What level of likelihood ratio in favor of the research hypothesis will be acceptable to the journal? Should scientific discoveries be based on whether posterior odds pass a specific threshold (P3)? Does either measure the size of an effect (P5)?…How can we decide about the sample size needed for a clinical trial—however analyzed—if we do not set a specific bright-line decision rule? 95% confidence intervals or credence intervals…offer no protection against selection when only those that do not cover 0, are selected into the abstract (P4). (Benjamini, ASA commentary, pp. 3-4)

What’s sauce for the goose is sauce for the gander right?  Many statisticians seconded George Cobb who urged “the board to set aside time at least once every year to consider the potential value of similar statements” to the recent ASA p-value report. Disappointingly, a preliminary survey of leaders in statistics, many from the original p-value group, aired striking disagreements on best and worst practices with respect to these other approaches. The Executive Board is contemplating a variety of recommendations, minimally, that practitioners move with caution until they can put forward at least a few agreed upon principles for interpreting and applying Bayesian inference methods. The words we heard ranged from “go slow” to “moratorium [emphasis mine]. Having been privy to some of the results of this survey, we at Stat Report Watch decided to contact some of the individuals involved. Continue reading

Categories: P-values, reforming the reformers, Statistics | 6 Comments

Slides from the Boston Colloquium for Philosophy of Science: “Severe Testing: The Key to Error Correction”

Slides from my March 17 presentation on “Severe Testing: The Key to Error Correction” given at the Boston Colloquium for Philosophy of Science Alfred I.Taub forum on “Understanding Reproducibility and Error Correction in Science.”

 

Categories: fallacy of rejection, Fisher, fraud, frequentist/Bayesian, Likelihood Principle, reforming the reformers | 16 Comments

BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE: Understanding Reproducibility & Error Correction in Science

BOSTON COLLOQUIUM FOR PHILOSOPHY OF SCIENCE

2016–2017
57th Annual Program

Download the 57th Annual Program

The Alfred I. Taub forum:

UNDERSTANDING REPRODUCIBILITY & ERROR CORRECTION IN SCIENCE

Cosponsored by GMS and BU’s BEST at Boston University.
Friday, March 17, 2017
1:00 p.m. – 5:00 p.m.
The Terrace Lounge, George Sherman Union
775 Commonwealth Avenue

  • Reputation, Variation, &, Control: Historical Perspectives
    Jutta Schickore History and Philosophy of Science & Medicine, Indiana University, Bloomington.
  • Crisis in Science: Time for Reform?
    Arturo Casadevall Molecular Microbiology & Immunology, Johns Hopkins
  • Severe Testing: The Key to Error Correction
    Deborah Mayo Philosophy, Virginia Tech
  • Replicate That…. Maintaining a Healthy Failure Rate in Science
    Stuart Firestein Biological Sciences, Columbia

 

boston-mayo-2017

Categories: Announcement, Statistical fraudbusting, Statistics | Leave a comment

Blog at WordPress.com.