Christian Robert’s *reply* grows out of my last blogpost. On Xi’an’s Og :

A quick reply from my own Elba, in the Dolomiti: your arguments (about the sad consequences of the SLP) are not convincing wrt the derivation of SLP=WCP+SP. If I built a procedure that reports (E

_{1},x*) whenever I observe (E_{1},x*) or (E_{2},y*), this obeys the sufficiency principle; doesn’t it? (Sorry to miss your talk!)

Mayo’s response to Xi’an on the “sad consequences of the SLP.”[i]

This is a useful reply (so to me it’s actually not ‘flogging’ the SLP[ii]), and, in fact, I think Xi’an will now see why my arguments are convincing! Let’s use Xi’an’s procedure to make a parametric inference about q. Getting the report x* from Xi’an’s procedure, we know it could have come from E_{1} or E_{2}. In that case, the WCP forbids us from using either individual experiment to compute the inference implication. We use the sampling distribution of T_{B}.

Birnbaum’s statistic T_{B} is a technically sufficient statistic for Birnbaum’s experiment E_{B } (the conditional distribution of Z given T_{B} is independent of q). The question of whether this is the relevant or legitimate way to compute the inference when it is given that y* came from E_{2 }is the big question. The WCP says it is not. Now you are free to use Xi’an’s procedure (free to Birnbaumize) but that does not yield the SLP. Nor did Birnbaum think it did. That’s why he goes on to say: “Never mind. Don’t use Xi’an’s procedure. Compute the inference using E_{2 } just as the WCP tells you to. You know it came from E_{2 }. Isn’t that what David Cox taught us in 1958?”

Fine. But still no SLP! Note it’s not that SP and WCP conflict, it’s WCP and Birnbaumization that conflict. The application of a principle will always be relative to the associated model used to frame the question.[iii]

These points are all spelled out clearly in my paper: [I can’t get double subscripts here. E_{B }is the same as E-B][iv]

Given

y*, the WCP says do not Birnbaumize. One is free to do so, but not to simultaneously claim to hold the WCP in relation to the giveny*, on pain of logical contradiction. If one does choose to Birnbaumize, and to construct T_{B}, admittedly, the known outcomey* yields the same value of T_{B}as wouldx*. Using the sample space of E_{B}yields: (B): Infr_{E-B}[x*] = Infr_{E-B}[y*]. This is based on the convex combination of the two experiments, and differs from both Infr_{E1}[x*] and Infr_{E2}[y*]. So again, any SLP violation remains. Granted, if only the value of T_{B}is given, using Infr_{E-B}may be appropriate. For then we are given only the disjunction: Either (E_{1},x*) or (E_{2},y*). In that case one is barred from using the implication from either individual E_{i}. A holder of WCP might put it this way: once (E,z) is given, whether E arose from a q-irrelevant mixture, or was fixed all along, should not matter to the inference; but whether a result was Birnbaumized or not should, and does, matter.There is no logical contradiction in holding that if data are analyzed one way (using the convex combination in E

_{B}), a given answer results, and if analyzed another way (via WCP) one gets quite a different result. One may consistently apply both the E_{B }and the WCP directives to the same result, in the same experimental model, only in cases where WCP makes no difference. To claim the WCP never makes a difference, however, would entail that there can be no SLP violations, which would make the argument circular. Another possibility, would be to hold, as Birnbaum ultimately did, that the SLP is “clearly plausible” (Birnbaum 1968, 301) only in “the severely restricted case of a parameter space of just two points” where these are predesignated (Birnbaum 1969, 128). But SLP violations remain.

Note: The final draft of my paper uses equations that do not transfer directly to this blog. Hence, these sections are from a draft of my paper.

[i] Although I didn’t call them “sad,” I think it would be too bad to accept the SLP’s consequences. Listen to Birnbaum:

The likelihood principle is incompatible with the main body of modern statistical theory and practice, notably the Neyman-Pearson theory of hypothesis testing and of confidence intervals, and incompatible in general even with such well-known concepts as standard error of an estimate and significance level. (Birnbaum 1968, 300)

That is why Savage called it “a breakthrough” result. In the end, however, Birnbaum could not give up on control of error probabilities. He held the SLP only for the trivial case of predesignated simple hypotheses. (Or, perhaps he spied the gap in his argument? I suspect, from his writings, that he realized his argument went through only for such cases that do not violate the SLP.)

[ii] Readers may feel differently.

[iii] Excerpt from a draft of my paper:

*Model checking. *An essential part of the statements of the principles SP, WCP, and SLP is that the validity of the model is granted as adequately representing the experimental conditions at hand (Birnbaum 1962, 491). Thus, accounts that adhere to the SLP are not thereby prevented from analyzing features of the data such as residuals, which are relevant to questions of checking the statistical model itself. There is some ambiguity on this point in Casella and R. Berger (2002):

Most model checking is, necessarily, based on statistics other than a sufficient statistic. For example, it is common practice to examine residuals from a model. . . Such a practice immediately violates the Sufficiency Principle, since the residuals are not based on sufficient statistics. (Of course such a practice directly violates the [strong] LP also.) (Casella and R. Berger 2002, 295-6)

They warn that before considering the SLP and WCP, “we must be comfortable with the model” (296). It seems to us more accurate to regard the principles as inapplicable, rather than violated, when the adequacy of the relevant model is lacking.

Birnbaum, A.1968. “Likelihood.” In *International Encyclopedia of the Social Sciences*, 9:299–301. New York: Macmillan and the Free Press.

———. 1969. “Concepts of Statistical Evidence.” In *Philosophy, Science, and Method: Essays in Honor of Ernest Nagel*, edited by S. Morgenbesser, P. Suppes, and M. G. White, 112–143. New York: St. Martin’s Press.

Casella, G., and R. L. Berger. 2002. *Statistical Inference*. 2nd ed. Belmont, CA: Duxbury Press.

Mayo 2013, (http://arxiv-web3.library.cornell.edu/pdf/1302.7021v2.pdf)