2015: The Large Hadron Collider (LHC) is back in collision mode in 2015[0]. There’s a 2015 update, a virtual display, and links from ATLAS, one of two detectors at (LHC)) here. The remainder is from one year ago. (2014) I’m reblogging a few of the Higgs posts at the anniversary of the 2012 discovery. (The first was in this post.) The following, was originally “Higgs Analysis and Statistical Flukes: part 2″ (from March, 2013).[1]
Some people say to me: “This kind of reasoning is fine for a ‘sexy science’ like high energy physics (HEP)”–as if their statistical inferences are radically different. But I maintain that this is the mode by which data are used in “uncertain” reasoning across the entire landscape of science and day-to-day learning (at least, when we’re trying to find things out)[2] Even with high level theories, the particular problems of learning from data are tackled piecemeal, in local inferences that afford error control. Granted, this statistical philosophy differs importantly from those that view the task as assigning comparative (or absolute) degrees-of-support/belief/plausibility to propositions, models, or theories.
“Higgs Analysis and Statistical Flukes: part 2”
Everyone was excited when the Higgs boson results were reported on July 4, 2012 indicating evidence for a Higgs-like particle based on a “5 sigma observed effect”. The observed effect refers to the number of excess events of a given type that are “observed” in comparison to the number (or proportion) that would be expected from background alone, and not due to a Higgs particle. This continues my earlier post (part 1). It is an outsider’s angle on one small aspect of the statistical inferences involved. But that, apart from being fascinated by it, is precisely why I have chosen to discuss it: we [philosophers of statistics] should be able to employ a general philosophy of inference to get an understanding of what is true about the controversial concepts we purport to illuminate, e.g., significance levels. Continue reading




























