U-Phil

U-PHIL: Wasserman Replies to Spanos and Hennig

Wasserman on Spanos and Hennig on  “Low Assumptions, High Dimensions” (2011)

(originating U-PHIL : “Deconstructing Larry Wasserman” by Mayo )

________

Thanks to Aris and others for comments .

Response to Aris Spanos:

1. You don’t prefer methods based on weak assumptions? Really? I suspect Aris is trying to be provocative. Yes such inferences can be less precise. Good. Accuracy is an illusion if it comes from assumptions, not from data.

2. I do not think I was promoting inferences based on “asymptotic grounds.” If I did, that was not my intent. I want finite sample, distribution free methods. As an example, consider the usual finite sample (order statistics based) confidence interval for the median. No regularity assumptions, no asymptotics, no approximations. What is there to object to?

3. Indeed, I do have to make some assumptions. For simplicity, and because it is often reasonable, I assumed iid in the paper (as I will here). Other than that, where am I making any untestable assumptions in the example of the median?

4. I gave a very terse and incomplete summary of Davies’ work. I urge readers to look at Davies’ papers; my summary does not do the work justice. He certainly did not advocate eyeballing the data. Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , , | 3 Comments

U-PHIL: Hennig and Gelman on Wasserman (2011)

Two further contributions in relation to

Low Assumptions, High Dimensions” (2011)

Please also see : “Deconstructing Larry Wasserman” by Mayo, and Comments by Spanos

Christian Hennig:  Some comments on Larry Wasserman, “Low Assumptions, High Dimensions”

I enjoyed reading this stimulating paper. These are very important issues indeed. I’ll comment on both main concepts in the text.

1) Low Assumptions. I think that the term “assumption” is routinely misused and misunderstood in statistics. In Wasserman’s paper I can’t see such misuse explicitly, but I think that the “message” of the paper may be easily misunderstood because Wasserman doesn’t do much to stop people from this kind of misunderstanding.

Here is what I mean. The arithmetic mean can be derived as optimal estimator under an i.i.d. Gaussian model, which is often interpreted as “model assumption” behind it. However, we don’t really need the Gaussian distribution to be true for the mean to do a good job. Sometimes the mean will do a bad job in a non-Gaussian situation (for example in presence of gross outliers), but sometimes not. The median has nice robustness properties and is seen as admissible for ordinal data. It is therefore usually associated with “weaker assumptions”. However, the median may be worse than the mean in a situation where the Gaussian “assumption” of the mean is grossly violated. At UCL we ask students on a -2/-1/0/1/2 Likert scale for their general opinion about our courses. The distributions that we get here are strongly discrete and the scale is usually interpreted as of ordinal type. Still, for ranking courses, the median is fairly useless (pretty much all courses end up with a median of 0 or 1); whereas, the arithmetic mean can still detect statistically significant meaningful differences between courses.

Why? Because it’s not only the “official” model assumptions that matter but also whether a statistic uses all the data in an appropriate manner for the given application. Here it’s fatal that the median ignores all differences among observations north and south of it. Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , , | 3 Comments

U-PHIL: Aris Spanos on Larry Wasserman

Our first outgrowth of “Deconstructing Larry Wasserman”. 

Aris Spanos – Comments on:

Low Assumptions, High Dimensions” (2011)

by Larry Wasserman*

I’m happy to play devil’s advocate in commenting on Larry’s very interesting and provocative (in a good way) paper on ‘how recent developments in statistical modeling and inference have [a] changed the intended scope of data analysis, and [b] raised new foundational issues that rendered the ‘older’ foundational problems more or less irrelevant’.

The new intended scope, ‘low assumptions, high dimensions’, is delimited by three characteristics:

“1. The number of parameters is larger than the number of data points.

2. Data can be numbers, images, text, video, manifolds, geometric objects, etc.

3. The model is always wrong. We use models, and they lead to useful insights but the parameters in the model are not meaningful.” (p. 1)

In the discussion that follows I focus almost exclusively on the ‘low assumptions’ component of the new paradigm. The discussion by David F. Hendry (2011), “Empirical Economic Model Discovery and Theory Evaluation,” RMM, 2: 115-145,  is particularly relevant to some of the issues raised by the ‘high dimensions’ component in a way that complements the discussion that follows.

My immediate reaction to the demarcation based on 1-3 is that the new intended scope, although interesting in itself, excludes the overwhelming majority of scientific fields where restriction 3 seems unduly limiting. In my own field of economics the substantive information comes primarily in the form of substantively specified mechanisms (structural models), accompanied with theory-restricted and substantively meaningful parameters.

In addition, I consider the assertion “the model is always wrong” an unhelpful truism when ‘wrong’ is used in the sense that “the model is not an exact picture of the ‘reality’ it aims to capture”. Worse, if ‘wrong’ refers to ‘the data in question could not have been generated by the assumed model’, then any inference based on such a model will be dubious at best! Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , , | 7 Comments

U-PHIL: Deconstructing Larry Wasserman

Deconstructing [i] Larry Wasserman

The temptation is strong, but I shall refrain from using the whole post to deconstruct Al Franken’s 2003 quip about media bias (from Lies and Lying Liars Who Tell Them: A Fair and Balanced Look at the Right), with which Larry Wasserman begins his paper “Low Assumptions, High Dimensions” (2011) in his contribution to Rationality, Markets and Morals (RMM) Special Topic: Statistical Science and Philosophy of Science:

Wasserman: There is a joke about media bias from the comedian Al Franken:
‘To make the argument that the media has a left- or right-wing, or a liberal or a conservative bias, is like asking if the problem with Al-Qaeda is: do they use too much oil in their hummus?’

According to Wasserman, “a similar comment could be applied to the usual debates in the foundations of statistical inference.”

Although it’s not altogether clear what Wasserman means by his analogy with comedian (now senator) Franken, it’s clear enough what Franken meant if we follow up the quip with the next sentence in his text (which Wasserman omits): “The problem with al Qaeda is that they’re trying to kill us!” (p. 1). The rest of Franken’s opening chapter is not about al Qaeda but about bias in media. Conservatives, he says, decry what they claim is a liberal bias in mainstream media. Franken rejects their claim.

The mainstream media does not have a liberal bias. And for all their other biases . . . , the mainstream media . . . at least try to be fair. …There is, however, a right-wing media. . . . They are biased. And they have an agenda…The members of the right-wing media are not interested in conveying the truth… . They are an indispensable component of the right-wing machine that has taken over our country… .   We have to be vigilant.  And we have to be more than vigilant.  We have to fight back… . Let’s call them what they are: liars. Lying, lying, liars. (Franken, pp. 3-4)

When I read this in 2004 (when Bush was in office), I couldn’t have agreed more. How things change*. Now, of course, any argument that swerves from the politically correct is by definition unsound, irrelevant, and/ or biased. [ii]

But what does this have to do with Bayesian-frequentist foundations? What is Wasserman, deep down, really trying to tell us by way of this analogy (if only subliminally)? Such are my ponderings—and thus this deconstruction.  (I will invite your “U-Phils” at the end.) I will allude to passages from my contribution to  RMM (2011) (in red).

A.What Is the Foundational Issue?

Wasserman: To me, the most pressing foundational question is: how do we reconcile the two most powerful needs in modern statistics: the need to make methods assumption free and the need to make methods work in high dimensions… . The Bayes-Frequentist debate is not irrelevant but it is not as central as it once was. (p. 201)

One may wonder why he calls this a foundational issue, as opposed to, say, a technical one. I will assume he means what he says and attempt to extract his meaning by looking through a foundational lens.

Let us examine the urgency of reconciling the need to make methods assumption-free and that of making them work in complex high dimensions. The problem of assumptions of course arises when they are made about unknowns that can introduce threats of error and/or misuse of methods. Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , | 21 Comments

Clark Glymour: The Theory of Search Is the Economics of Discovery (part 2)

“Some Thoughts Prompted by David Hendry’s Essay * (RMM) Special Topic: Statistical Science and Philosophy of Science,” by  Professor Clark Glymour

Part 2 (of 2) (Please begin with part 1)

The first thing one wants to know about a search method is what it is searching for, what would count as getting it right. One might want to estimate a probability distribution, or get correct forecasts of some probabilistic function of the distribution (e.g., out-of-sample means), or a causal structure, or some probabilistic function of the distribution resulting from some class of interventions.  Secondly, one wants to know about what decision theorists call a loss function, but less precisely, what is the comparative importance of various errors of measurement, or, in other terms, what makes some approximations better than others. Third, one wants a limiting consistency proof: sufficient conditions for the search to reach the goal in the large sample limit. There are various kinds of consistency—pointwise versus uniform for example—and one wants to know which of those, if any, hold for a search method under what assumptions about the hypothesis space and the sampling distribution. Fourth, one wants to know as much as possible about the behavior of the search method on finite samples. In simple cases of statistical estimation there are analytic results; more often for search methods only simulation results are possible, but if so, one wants them to explore the bounds of failure, not just easy cases. And, of course, one wants a rationale for limiting the search space, as well as, some sense of how wrong the search can be if those limits are violated in various ways.

There are other important economic features of search procedures. Probability distributions (or likelihood functions) can instantiate any number of constraints—vanishing partial correlations for example, or inequalities of correlations. Suppose the hypothesis space delimits some big class of probability distributions. Suppose the search proceeds by testing constraints (the points that follow apply as well if the procedure computes posterior probabilities for particular hypotheses and applies a decision rule.) There is a natural partial ordering of classes of constraints: B is weaker than A if and only if every distribution that satisfies class A satisfies class B.  Other things equal, a weakest class might be preferred because it requires fewer tests.  But more important is what the test of a constraint does in efficiently guiding the search. A test that eliminates a particular hypothesis is not much help. A test that eliminates a big class of hypotheses is a lot of help.

Other factors: the power of the requisite tests; the numbers of tests (or posterior probability assessments) required; the computational requirements of individual tests (or posterior probability assessments.) And so on.  And, finally, search algorithms have varying degrees of generality. For example, there are general algorithms, such as the widely used PC search algorithm for graphical causal models, that are essentially search schema: stick in whatever decision procedure for conditional independence and PC becomes a search procedure using that conditional independence oracle. By contrast, some searches are so embedded in a particular hypothesis space that it is difficult to see the generality.

I am sure I am not qualified to comment on the details of Hendry’s search procedure, and even if I were, for reasons of space his presentation is too compressed for that. Still, I can make some general remarks.  I do not know from his essay the answers to many of the questions pertinent to evaluating a search procedure that I raised above. For example, his success criterion is “congruence” and I have no idea what that is. That is likely my fault, since I have read only one of his books, and that long ago.

David Hendry dismisses “priors,” meaning, I think, Bayesian methods, with an argument from language acquisition. Kids don’t need priors to learn a language. I am not sure of Hendry’s logic.  Particular grammars within a parametric “universal grammar” could in principle be learned by a Bayesian procedure, although I have no reason to think they are. But one way or the other, that has no import for whether Bayesian procedures are the most advantageous for various search problems by any of the criteria I have noted above. Sometimes they may be, sometimes not, there is no uniform answer, in part because computational requirements vary. I could give examples, but space forbids.

Abstractly, one could think there are two possible ways of searching when the set of relationships to be uncovered may form a complex web: start by positing all possible relationships and eliminate from there, or start by positing no relationships and build up.  Hendry dismisses the latter, with what generality I do not know. What I do know is that the relations between “bottom-up” and “top-down” or “forward” and “backward” search can be intricate, and in some cases one may need both for consistency.  Sometimes either will do. Graphical models, for example can be searched starting with the assumption that every variable influences every other and eliminating, or starting with the assumption that no variable influences any other and adding.  There are pointwise consistent searches in both directions. The real difference is in complexity.

Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , , | 11 Comments

Clark Glymour: The Theory of Search Is the Economics of Discovery (part 1)

The Theory of Search Is the Economics of Discovery:
Some Thoughts Prompted by Sir David Hendry’s Essay  *
in Rationality, Markets and Morals (RMM) Special Topic:
Statistical Science and Philosophy of Science

Part 1 (of 2)

Professor Clark Glymour

Alumni University Professor
Department of Philosophy[i]
Carnegie Mellon University

Professor Hendry* endorses a distinction between the “context of discovery” and the “context of evaluation” which he attributes to Herschel and to Popper and could as well have attributed also to Reichenbach and to most contemporary methodological commentators in the social sciences. The “context” distinction codes two theses.

1.“Discovery” is a mysterious psychological process of generating hypotheses; “evaluation” is about the less mysterious process of warranting them.

2. Of the three possible relations with data that could conceivably warrant a hypothesis—how it was generated, its explanatory connections with the data used to generate it, and its predictions—only the last counts.

Einstein maintained the first but not the second. Popper maintained the first but that nothing warrants a hypothesis.  Hendry seems to maintain neither–he has a method for discovery in econometrics, a search procedure briefly summarized in the second part of his essay, which is not evaluated by forecasts. Methods may be esoteric but they are not mysterious. And yet Hendry endorses the distinction. Let’s consider it.

As a general principle rather than a series of anecdotes, the distinction between discovery and justification or evaluation has never been clear and what has been said in its favor of its implied theses has not made much sense, ever. Let’s start with the father of one of Hendry’s endorsers, William Herschel. William Herschel discovered Uranus, or something. Actually, the discovery of the planet Uranus was a collective effort with, subject to vicissitudes of error and individual opinion, was a rational search strategy. On March 13, 1781, in the course of a sky survey for double stars Hershel reports in his journal the observation of a “nebulous star or perhaps a comet.”  The object came to his notice how it appeared through the telescope, perhaps the appearance of a disc. Herschel changed the magnification of his telescope, and finding that the brightness of the object changed more than the brightness of fixed stars, concluded he had seen a comet or “nebulous star.”  Observations that, on later nights, it had moved eliminated the “nebulous star” alternative and Herschel concluded that he had seen a comet. Why not a planet? Because lots of comets had been hitherto observed—Edmund Halley computed orbits for half a dozen including his eponymous comet—but never a planet.  A comet was much the more likely on frequency grounds. Further, Herschel had made a large error in his estimate of the distance of the body based on parallax values using his micrometer.  A planet could not be so close.

Continue reading

Categories: philosophy of science, Philosophy of Statistics, Statistics, U-Phil | Tags: , , , | 1 Comment

Deconstructing Larry Wasserman–it starts like this…

In my July 8, 2012 post “Metablog: Up and Coming,” I wrote: “I will attempt a (daring) deconstruction of Professor Wasserman’s paper[i] and at that time will invite your “U-Phils” for posting around a week after (<1000 words).” These could reflect on Wasserman’s paper and/or my deconstruction of it. See an earlier post for the way we are using “deconstructing” here. For some guides, see “so you want to do a philosophical analysis“.

So my Wasserman deconstruction notes have been sitting in the “draft” version of this blog for several days as we focused on other things.  Here’s how it starts…

             Deconstructing Larry Wasserman–it starts like this…

1.Al Franken’s Joke

The temptation is strong, but I shall refrain from using the whole post to deconstruct Al Franken’s 2003 quip about media bias (from Lies and Lying Liars Who Tell Them: A Fair and Balanced Look at the Right), with which Larry Wasserman begins his paper “Low Assumptions, High Dimensions” (2011):

To make the argument that the media has a left- or right-wing, or a liberal or a conservative bias, is like asking if the problem with Al-Qaeda is: do they use too much oil in their hummus?

According to Wasserman, “a similar comment could be applied to the usual debates in the foundations of statistical inference.”

Although it’s not altogether clear what Wasserman means by his analogy with comedian (now senator) Franken, it’s clear enough what Franken means if we follow up the quip with the next sentence in his text (which Wasserman omits): “The problem with al Qaeda is that they’re trying to kill us!” (p. 1) The rest of Franken’s opening chapter is not about al Qaeda but about bias in media.

But what does this have to do with the usual debates in the foundations of statistical inference? What is Wasserman, deep down, perhaps unconsciously, really, really, possibly implicitly, trying to tell us by way of this analogy? Such are the ponderings in my deconstruction of him…

Yet the footnote to my July 8 blog also said that my post assumed ” I don’t chicken out”.  So I will put it aside until I get a chorus of encouragement to post it…

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , | 5 Comments

Metablog: Up and Coming

Dear Reader: Over the next week, in addition to a regularly scheduled post by Professor Stephen Senn, we will be taking up two papers[i] from the contributions to the special topic: “Statistical Science and Philosophy of Science: Where Do (Should) They Meet in 2011 and Beyond?” in Rationality, Markets and Morals: Studies at the Intersection of Philosophy and Economics.

I will attempt a (daring) deconstruction of Professor Wasserman’s paper[ii] and at that time will invite your “U-Phils” for posting around a week after (<1000 words).  I will be posting comments by Clark Glymour on Sir David Hendry’s paper later in the week. So you may want to study those papers in advance.

The first “deconstruction” (“Irony and Bad Faith, Deconstructing Bayesians 1”) may be found here / https://errorstatistics.com/2012/04/17/3466/; for a selection of both U-Phils and Deconstructions, see https://errorstatistics.com/2012/04/17/3466/

D. Mayo

P.S. Those who had laughed at me for using this old trusty typewriter were asking to borrow it last week when we lost power for 6 days and their computers were down.


[i] *L. Wasserman, “Low Assumptions, High Dimensions”. RMM Vol. 2, 2011, 201–209;

D. Hendry, “Empirical Economic Model Discovery and Theory Evaluation”. RMM Vol. 2, 2011, 115–145.

[ii] Assuming I don’t chicken out.

Categories: Metablog, Philosophy of Statistics, U-Phil | Tags: , | Leave a comment

U-Phil: Is the Use of Power* Open to a Power Paradox?

* to assess Detectable Discrepancy Size (DDS)

In my last post, I argued that DDS type calculations (also called Neymanian power analysis) provide needful information to avoid fallacies of acceptance in the test T+; whereas, the corresponding confidence interval does not (at least not without special testing supplements).  But some have argued that DDS computations are “fundamentally flawed” leading to what is called the “power approach paradox”, e.g., Hoenig and Heisey (2001).

We are to consider two variations on the one-tailed test T+: H0: μ ≤ 0 versus H1: μ > 0 (p. 21).  Following their terminology and symbols:  The Z value in the first, Zp1, exceeds the Z value in the second, Zp2, although the same observed effect size occurs in both[i], and both have the same sample size, implying that σ1 < σ2.  For example, suppose σx1 = 1 and σx2 = 2.  Let observed sample mean M be 1.4 for both cases, so Zp1 = 1.4 and Zp2 = .7. They note that for any chosen power, the computable detectable discrepancy size will be smaller in the first experiment, and for any conjectured effect size, the computed power will always be higher in the first experiment.

“These results lead to the nonsensical conclusion that the first experiment provides the stronger evidence for the null hypothesis (because the apparent power is higher but significant results were not obtained), in direct contradiction to the standard interpretation of the experimental results (p-values).” (p. 21)

But rather than show the DDS assessment “nonsensical”, nor any direct contradiction to interpreting p values, this just demonstrates something  nonsensical in their interpretation of the two p-value results from tests with different variances.  Since it’s Sunday  night and I’m nursing[ii] overexposure to rowing in the Queen’s Jubilee boats in the rain and wind, how about you find the howler in their treatment. (Also please inform us of articles pointing this out in the last decade, if you know of any.)

______________________

Hoenig, J. M. and D. M. Heisey (2001), “The Abuse of Power: The Pervasive Fallacy of Power Calculations in Data Analysis,” The American Statistician, 55: 19-24.

 


[i] The subscript indicates the p-value of the associated Z value.

[ii] With English tea and a cup of strong “Elbar grease”.

Categories: Statistics, U-Phil | Tags: , , , , , | 7 Comments

U-Phil: Jon Williamson: Deconstructing Dynamic Dutch Books

Jon Williamson

I am  posting Jon Williamson’s* (Philosophy, Kent) U-Phil from 4-15-12

In this paper http://www.springerlink.com/content/q175036678w17478 (Synthese 178:67–85) I identify four ways in which Bayesian conditionalisation can fail. Of course not all Bayesians advocate conditionalisation as a universal rule, and I argue that objective Bayesianism as based on the maximum entropy principle should be preferred to subjective Bayesianism as based on conditionalisation, where the two disagree.

Conditionalisation is just one possible way of updating probabilities and I think it’s interesting to see how different formal approaches compare.

*Williamson participated in our June 2010 “Phil-Stat Meets Phil Sci” conference at the LSE, and we jointly ran a conference at Kent in June 2009.

Categories: Statistics, U-Phil | Tags: , , , , | 10 Comments

Earlier U-Phils and Deconstructions

Dear Reader: If you wish to see some previous rounds of philosophical analyses and deconstructions on this blog, we’ve listed some of them below:(search this blog under “U-Phil” for more)

Introductory explanation: https://errorstatistics.com/2012/01/13/u-phil-so-you-want-to-do-a-philosophical-analysis/

Mayo on Jim Berger:  https://errorstatistics.com/2011/12/11/irony-and-bad-faith-deconstructing-bayesians-1/

Contributed deconstructions of J. Berger: https://errorstatistics.com/2011/12/26/contributed-deconstructions-irony-bad-faith-3/

J. Berger on J. Berger: https://errorstatistics.com/2011/12/29/jim-berger-on-jim-berger/

Mayo on Senn:  https://errorstatistics.com/2012/01/15/mayo-philosophizes-on-stephen-senn-how-can-we-cultivate-senns-ability/

Others on Senn: https://errorstatistics.com/2012/01/22/u-phil-stephen-senn-1-c-robert-a-jaffe-and-mayo-brief-remarks/

Gelman on Senn: https://errorstatistics.com/2012/01/23/u-phil-stephen-senn-2-andrew-gelman/

Senn on Senn: http://errorstatistics.com/2012/01/24/u-phil-3-stephen-senn-on-stephen-senn/

Mayo, Senn & Wasserman on Gelman: https://errorstatistics.com/2012/03/06/2645/

Hennig on Gelman: https://errorstatistics.com/2012/03/10/a-further-comment-on-gelman-by-c-hennig/

Deconstructing Dutch books: https://errorstatistics.com/2012/04/15/3376/

Deconstructing Larry Wasserman
https://errorstatistics.com/2012/07/28/u-phil-deconstructing-larry-wasserman/

Aris Spanos on Larry Wasserman
https://errorstatistics.com/2012/08/08/u-phil-aris-spanos-on-larry-wasserman/

Hennig and Gelman on Wasserman
https://errorstatistics.com/2012/08/10/u-phil-hennig-and-gelman-on-wasserman-2011/

Wasserman replies to Spanos and Hennig
https://errorstatistics.com/2012/08/11/u-phil-wasserman-replies-to-spanos-and-hennig/

concluding the deconstruction: Wasserman-Mayo
https://errorstatistics.com/2012/08/13/u-phil-concluding-the-deconstruction-wasserman-mayo/

https://errorstatistics.com/2013/02/10/u-phil-gandenberger-hennig-birnbaums-proof/

https://errorstatistics.com/2013/01/30/u-phil-j-a-miller-blogging-the-slp/

 

There are  others, but this should do; if you care to write on my previous post (send directly to error@vt.edu).

Sincerely,

D Mayo

Categories: philosophy of science, U-Phil | Tags: , , | Leave a comment

U-Phil: Deconstructing Dynamic Dutch-Books?

Oh, she takes care of herself, she can wait if she wants,
She’s ahead of her time.
Oh, and s
he never gives out and she never gives in,
She just changes her mind.

(Billy Joel, “She’s Always a Woman”)

If we agree that we have degrees of belief in any and all propositions, then, it is often argued (by Bayesians), that if your beliefs do not conform to the probability calculus, you are being incoherent, and will lose money for sure (by a clever enough bookie). We can accept the claim that, were we required to take bets on our degrees of belief, then given that we prefer not to lose, we would not accept bets that ensured our losing. But this is a tautology, as others have pointed out, and entails nothing about degree of belief assignments. “That an agent ought not to accept a set of wagers according to which she loses come what may, if she would prefer not to lose, is a matter of deductive logic and not a property of beliefs” (Bacchus, Kyburg, and Thalos 1990: 476).[i] Nor need coerced (or imaginary) betting rates actually measure an agent’s degrees of belief in the truth of scientific hypothesis..

Nowadays, surprisingly, most Bayesian philosophers seem to dismiss as irrelevant the variety of threats of being Dutch-booked. Confronted with counterexamples in which violating Bayes’s rule seems perfectly rational on intuitive grounds, Bayesians contort themselves into a great many knots in order to retain the underlying Bayesian philosophy while sacrificing updating rules, long held to be the very essence of Bayesian reasoning. To face contemporary positions squarely calls for rather imaginative deconstructions. I invite your deconstructions (to error@vt.edu) by April 23 (see So You Want to Do a Philosophical Analysis). Says Howson:

“It is the entirely rational claim that I may be induced to act irrationally that the dynamic Dutch book argument, absurdly, would condemn as incoherent”. (Howson 1997: 287)[ii] [iii]

It used to be that frequentists and others who sounded the alarm about temporal incoherency were declared irrational. Now, it is the traditional insistence on updating by Bayes’s rule that was irrational all along. Continue reading

Categories: Statistics, U-Phil | Tags: , | 22 Comments

Blogologue*

Gelman responds on his blog today: “Gelman on Hennig on Gelman on Bayes”.

http://andrewgelman.com/2012/03/gelman-on-hennig-on-gelman-on-bayes/

I invite comments here….

*An ongoing exchange among a group of blogs that remain distinct (just coined)

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , | Leave a comment

U-PHIL: A Further Comment on Gelman by Christian Hennig (UCL, Statistics)

Comment on Gelman’sInduction and Deduction in Bayesian Data Analysis” (RMM)

Dr. Christian Hennig (Senior Lecturer, Department of Statistical Science, University College London)

I have read quite a bit of what Andrew Gelman has written in recent years, including some of his blog. One thing that I find particularly refreshing and important about his approach is that he contrasts the Bayesian and frequentist philosophical conceptions honestly with what happens in the practice of data analysis, which often cannot (or does better not to) proceed according to an inflexible dogmatic book of rules.

I also like the emphasis on the fact that all models are wrong. I personally believe that a good philosophy of statistics should consistently take into account that models are rather tools for thinking than able to “match” reality, and in the vast majority of cases we know clearly that they are wrong (all continuous models are wrong because all observed data are discrete, for a start).

There is, however, one issue on which I find his approach unsatisfactory (or at least not well enough explained), and on which both frequentism and subjective Bayesianism seem superior to me.

Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , | 5 Comments

Lifting a piece from Spanos’ contribution* will usefully add to the mix

The following two sections from Aris Spanos’ contribution to the RMM volume are relevant to the points raised by Gelman (as regards what I am calling the “two slogans”)**.

 6.1 Objectivity in Inference (From Spanos, RMM 2011, pp. 166-7)

The traditional literature seems to suggest that ‘objectivity’ stems from the mere fact that one assumes a statistical model (a likelihood function), enabling one to accommodate highly complex models. Worse, in Bayesian modeling it is often misleadingly claimed that as long as a prior is determined by the assumed statistical model—the so called reference prior—the resulting inference procedures are objective, or at least as objective as the traditional frequentist procedures:

“Any statistical analysis contains a fair number of subjective elements; these include (among others) the data selected, the model assumptions, and the choice of the quantities of interest. Reference analysis may be argued to provide an ‘objective’ Bayesian solution to statistical inference in just the same sense that conventional statistical methods claim to be ‘objective’: in that the solutions only depend on model assumptions and observed data.” (Bernardo 2010, 117)

This claim brings out the unfathomable gap between the notion of ‘objectivity’ as understood in Bayesian statistics, and the error statistical viewpoint. As argued above, there is nothing ‘subjective’ about the choice of the statistical model Mθ(z) because it is chosen with a view to account for the statistical regularities in data z0, and its validity can be objectively assessed using trenchant M-S testing. Model validation, as understood in error statistics, plays a pivotal role in providing an ‘objective scrutiny’ of the reliability of the ensuing inductive procedures.

Continue reading

Categories: Philosophy of Statistics, Statistics, Testing Assumptions, U-Phil | Tags: , , , , | 43 Comments

Mayo, Senn, and Wasserman on Gelman’s RMM** Contribution

Picking up the pieces…

Continuing with our discussion of contributions to the special topic,  Statistical Science and Philosophy of Science in Rationality, Markets and Morals (RMM),* I am pleased to post some comments on Andrew **Gelman’s paper “Induction and Deduction in Bayesian Data Analysis”.  (More comments to follow—as always, feel free to comment.)

Note: March 9, 2012: Gelman has commented to some of our comments on his blog today: http://andrewgelman.com/2012/03/coming-to-agreement-on-philosophy-of-statistics/

D. Mayo

For now, I will limit my own comments to two: First, a fairly uncontroversial point, while Gelman writes that “Popper has argued (convincingly, in my opinion) that scientific inference is not inductive but deductive,” a main point of my series (Part 123) of “No-Pain” philosophy was that “deductive” falsification involves inductively inferring a “falsifying hypothesis”.

More importantly, and more challengingly, Gelman claims the view he recommends “corresponds closely to the error-statistics idea of Mayo (1996)”.  Now the idea that non-Bayesian ideas might afford a foundation for strands of Bayesianism is not as implausible as it may seem. On the face of it, any inference to a claim, whether to the adequacy of a model (for a given purpose), or even to a posterior probability, can be said to be warranted just to the extent that the claim has withstood a severe test (i.e, a test that would, at least with reasonable probability, have discerned a flaw with the claim, were it false).  The question is: How well do Gelman’s methods for inferring statistical models satisfy severity criteria?  (I’m not sufficiently familiar with his intended applications to say.)

Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , | 1 Comment

U-PHIL (3): Stephen Senn on Stephen Senn!

I am grateful to Deborah Mayo for having highlighted my recent piece. I am not sure that it deserves the attention it is receiving.Deborah has spotted a flaw in my discussion of pragmatic Bayesianism. In praising the use of background knowledge I can neither be talking about automatic Bayesianism nor about subjective Bayesianism. It is clear that background knowledge ought not generally to lead to uninformative priors (whatever they might be) and so is not really what objective Bayesianism is about. On the other hand all subjective Bayesians care about is coherence and it is easy to produce examples where Bayesians quite logically will react differently to evidence, so what exactly is ‘background knowledge’?. Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , | Leave a comment

U-PHIL: Stephen Senn (2): Andrew Gelman

 I agree with Senn’s comments on the impossibility of the de Finetti subjective Bayesian approach.  As I wrote in 2008, if you could really construct a subjective prior you believe in, why not just look at the data and write down your subjective posterior.  The immense practical difficulties with any serious system of inference render it absurd to think that it would be possible to just write down a probability distribution to represent uncertainty.  I wish, however, that Senn would recognize “my” Bayesian approach (which is also that of John Carlin, Hal Stern, Don Rubin, and, I believe, others).  De Finetti is no longer around, but we are!
Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , , | 4 Comments

U-PHIL: Stephen Senn (1): C. Robert, A. Jaffe, and Mayo (brief remarks)

I very much appreciate C. Robert and A. Jaffe sharing some reflections on Stephen Senn’s article for this blog, especially as I have only met these two statisticians recently, at different conferences. My only wish is that they had taken a bit more seriously my request to “hold (a portion of) the text at ‘arm’s length,’ as it were. Cycle around it, slowly. Give it a generous interpretation, then cycle around it again self-critically” (January 13, 2011).  (I conceded it would feel foreign, but I strongly recommend it!)
Since these authors have given bloglinks, I’ll just note them here and give a few brief responses:
Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , | 3 Comments

Mayo Philosophizes on Stephen Senn: "How Can We Cultivate Senn’s-Ability?"

Where’s Mayo?

Although, in one sense, Senn’s remarks echo the passage of Jim Berger’s that we deconstructed a few weeks ago, Senn at the same time seems to reach an opposite conclusion. He points out how, in practice, people who claim to have carried out a (subjective) Bayesian analysis have actually done something very different—but that then they heap credit on the Bayesian ideal. (See also the blog post “Who Is Doing the Work?”) Continue reading

Categories: Philosophy of Statistics, Statistics, U-Phil | Tags: , , , , | 7 Comments

Blog at WordPress.com.