I shall be concerned with the foundations of the subject. But in case it should be thought that this means I am not here strongly concerned with practical applications, let me say right away that confusion about the foundations of the subject is responsible, in my opinion, for much of the misuse of the statistics that one meets in fields of application such as medicine, psychology, sociology, economics, and so forth. (George Barnard 1985, p. 2)
While statistical science (as with other sciences) generally goes about its business without attending to its own foundations, implicit in every statistical methodology are core ideas that direct its principles, methods, and interpretations. I will call this its statistical philosophy. To tell what’s true about statistical inference, understanding the associated philosophy (or philosophies) is essential. Discussions of statistical foundations tend to focus on how to interpret probability, and much less on the overarching question of how probability ought to be used in inference. Assumptions about the latter lurk implicitly behind debates, but rarely get the limelight. If we put the spotlight on them, we see that there are two main philosophies about the roles of probability in statistical inference: We may dub them performance (in the long run) and probabilism. Continue reading
















3 years ago…




